Aimed at providing real-time monitoring of a combat soldier's health status to improve mission efficiency, the award supports further development of the company's biosensor technology for real-time detection of the body's chemical constituents.

DARPA and ARO are agencies of the U.S. Department of Defense focused on the developing emerging technologies for use by the military.

"Profusa's vision is to replace a point-in-time chemistry panel that measures multiple bio­markers, such as oxygen, glucose, lactate, urea, and ions with a biosensor that provides a continuous stream of wireless data," said Ben Hwang, Ph.D., Profusa's chairman and chief executive officer.

"DARPA's mission is to make pivotal investments in breakthrough tech­nologies for national security. We are gratified to be awarded this grant to accelerate the development of our novel tissue-integrating sensors for application to soldier health and peak performance."

Supported by DARPA, ARO and the National Institutes of Health, Profusa's technology and unique bioengineering approach overcomes the largest hurdle in long-term use of biosensors in the body: the foreign body response.

Placed just under the skin with a specially designed injector, each tiny biosensor is a flexible fiber, 2 mm-to-5 mm long and 200-500 microns in dia­meter. Rather than being isolated from the body, Profusa's biosensors work fully integrated within the body's tissue — without any metal device or electronics — overcoming the effects of the foreign body response for more than one year.

Each biosensor is comprised of a bioengineered "smart hydrogel" (similar to contact lens mater­ial) forming a porous, tissue-integrating scaffold that induces capillary and cellular in-growth from surrounding tissue.

A unique property of the smart gel is its ability to luminesce upon exposure to light in proportion to the concentration of a chemical such as oxygen, glucose or other biomarker.

"Long-lasting, implantable biosensors that provide continuous measurement of multiple body chemistries will enable monitoring of a soldier's metabolic and dehydration status, ion panels, blood gases, and other key physiological biomarkers," said Natalie Wisniewski, Ph.D., the principal investigator leading the grant work and Profusa's co-founder and chief technology officer.

"Our ongoing program with DARPA builds on Profusa's tissue-integrating sensor that overcomes the foreign body response and serves as a technology platform for the detection of multiple analytes."

Profusa's first medical product, the Lumee Oxygen Sensing System, is a single-biomarker sensor designed to measure oxygen. In contrast to blood oxygen reported by other devices, the system incorporates the only technology that can monitor local tissue oxygen.

When applied to the treatment of peripheral artery disease (PAD), it prompts the clinician to provide therapeutic action to ensure tissue oxygen levels persist throughout the treatment and healing process.

Pending CE Mark, the Lumee system is slated to be available in Europe in 2016 for use by vascular surgeons, wound-healing specialists and other licensed healthcare providers who may benefit in monitoring local tissue oxygen.

PAD affects 202 million people worldwide, 27 million of whom live in Europe and North America, with an annual economic burden of more than $74 billion in the U.S. alone.