Stratasys, the 3D printing and additive manufacturing solutions company, announced that its color, multi-material technology is being successfully deployed to aid cancer surgeons in treating patients.

Physicians use the models during pre-surgery planning of complicated kidney tumor removal, helping to perform precise and successful kidney-sparing surgery and improving patient outcomes. The 3D printed models are also used to improve surgeon training, as well as enhancing the explanatory process towards patients.

The advanced surgical process, which utilizes transparent and color 3D printed models produced on Stratasys’ color, multi-material 3D Printer, the Objet500 Connex3 , is being pioneered by the Department of Urology and Kidney Transplantation at the University Hospital (CHU) de Bordeaux, in France.

According to CHU surgeon Dr Jean-Christophe Bernhard, this is currently the only hospital in France – and one of the first in the world – to deploy Stratasys’ multi-color, multi-material 3D printing technology for complex kidney tumor removal cases.

"Having a 3D printed model comprising the patient’s kidney tumor, main arteries and vessels – each in a different color – provides an accurate picture of what we will see during operations," says Dr Bernhard.

"Importantly, the ability to visualize the specific location of a tumor in relation to these other elements, all in three dimensions, greatly facilitates our task and is not something that is easily achievable from a 2D scan," he adds.

According to Dr Bernhard, the clearer view offered by the 3D printed model may increase the ability to perform precise and successful kidney-sparing surgery. The pre-surgery planning aids in identifying and avoiding damage to the delicate nearby arteries and vessels which can result in complete kidney removal. Sparing the patient’s kidney is important because it reduces the chance of subsequently suffering from chronic kidney disease.

"3D printing technology has effectively heralded a new dawn," continues Dr Bernhard. "A scan gives us good information, but it’s in 2D. This relies on the surgeon to mentally reconstruct the tumor volume in 3D and estimate its location inside of the total volume of the kidney."